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1. Introduction

To solve many practical complex optimization problems often results in having to minimize a

nonsmooth function f . The graph of such a function of n variables appears V-shaped in some

directions while in directions orthogonal to these the graph of f ’s closely related “U-Lagrangian”

[9] is U-shaped. To be efficient a minimization algorithm needs to approximate the correct “VU-

space decomposition” and any existing second order information on the U-subspace via some kind

of corresponding combination of polyhedral(V-shaped) and quadratic(U-shaped) approximation.

For a convex function f the relevant second order information is contained in the “U-Hessian”, i.e.

the Hessian of its U-Lagrangian. An initial version of a VU-algorithm that does this for convex

functions was published in [20]. It depends on approximating points on “primal-dual tracks” [18]

where U-Hessians exist. Such approximation is based on two fundamental results depending on

proximal point and bundle method theories [6]. The first is the result from [20] that says that if

there exists a primal track leading to a minimizer x̄ at which a nondegeneracy asssumption holds

and a varying proximal point parameter µ = µ(x) satisfies µ(x)|x− x̄| → 0 as x→ x̄, then for all x

sufficiently close to x̄ the proximal point of x, denoted by pµ(x), is on the primal track. The second

result from [3] implies that for any µ > 0 and x ∈ <n pµ(x) can be approximated with arbitrary

precision by a finite sequence of bundle algorithm steps. In this context x is called a bundle center.

Moreover, because a bundle method [6, 1] employs V-shaped (or cutting-plane) appproximation,

based on gathering together a set of subgradients, it can provide local VU-decomposition basis

matrices and “U-gradients” (i.e. gradients of U-Lagrangians) without having to know explicitly

the underlying structure of f .

The basic VU-algorithm alternates V-steps (or corrector steps) with U-steps (or predictor steps)

in an attempt to follow an unknown primal track. A U-step is a Newton step (depending on

local first and second order U-derivative approximations) from a primal track point estimate p

(approximating pµ(x)) to the next bundle center x+, a point that could be a relatively poor

estimate of the next primal track point. A next V-step is the final substep in a sequence of bundle

algorithm substeps. It gives a correction step from x+ to the next primal track point estimate p+.

The VU-basis matrices needed to form these steps are obtained as a by-product from computing

the vector with smallest Euclidean norm in the convex hull of the subgradients active in the bundle

1
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subroutine generation of p. This short vector is denoted by s and is an estimate of a dual track

point. The U-gradient required for calculation of the U-Newton step is the U-projection of s.

To prove convergence, even when a primal track does not exist, there is a line search on the line

segment from p to p+ whenever f(p+) is not sufficiently smaller than f(p) relative to a multiple

of |s|2. This search generates a replacement for x+ such that its corresponding p+, coming from

a second bundle subroutine run, does satisfy sufficient f -decrease.

The line search recursively builds a one-dimensional V-model of f and stops when this model

is as accurate as the n-dimensional V-model generated by the bundle run that produced p. It also

develops a single variable U-model as in [8]. Information gained from this search is then used in

deciding a new (usually smaller) value for µ and in initializing the bundle of subgradients for the

second bundle run of the current iteration.

Also, the algorithm includes another line search which may change x+ before the first bundle

run in an iteration. This extrapolation line search along the U-step direction from p is called for

when a Wolfe directional derivative increase test [1] is not satisfied at x+. This search continues

until such a test is satisfied and then x+ is redefined to be the search point found with the least

f -value. Data from this search goes into possibly changing the value of µ and into initializing the

bundle for the first bundle run. Moreover, at the first iteration, if an extrapolation line search is

not called for, then an interpolation line search is called in order to obtain data for choosing an

initial value µ = µ1, so that the user does not have to input this value. Any line search called for

by the algorithm appends up to two new subgradients to the bundle.

In addition to the above features, there is a special test for trying to detect that f is smooth in

the sense that at a minimizer its U-space dimension equals n. When this f -descent test is satisfied

this results in p+ being set to x+, i.e. there is no bundle run when the primal track is estimated

to be an n-dimensional ball about a minimizer.

For various proofs, the initial version of the algorithm kept µ ≤ µ̄ where µ̄ is a fixed upper

bound on the settings of µ for all bundle runs. The current version does this for all needed second

bundle runs, but allows the µ-sequence corresponding to first bundle runs to go to infinity. Lemma

17 in [20], dealing with superlinear convergence, gives an implementable rate at which µ should

increase when a primal-dual track is approximated sufficiently well, but for overall efficiency and

convergence the algorithm was modified to include heuristics to keep µ from getting too large too

soon in a run. A new proof of convergence was produced to deal with this simple modification. The

observed numerical advantage for allowing µ to increase significantly at the end of a run is that

the bundle subproblems do not become more difficult to solve as the iteration number increases.

This is in extreme contrast to earlier proximal point methods [21] that had the parameter go to

zero to obtain superlinear convergence at the cost of having the subproblems become increasingly

more difficult to solve.
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Some numerical reults produced by the above described algorithm are shown in Table 1 and

discussed next:

2d-U1 3d-EX 3d-U2 3d-U1 3d-U0 MAXQUAD

f/g Ac f/g Ac f/g Ac f/g Ac f/g Ac f/g Ac

N1CV2 38 7 103 7 55 7 61 7 30 7 156 8

N.VU 12 16 21 10 12 14 13 14 18 12 50 14

qN.VU 14 12 37 11 35 11 29 15 34 14 71 11

Table 1: Summary of numerical results

The bottom three rows of the table’s first column name three different methods applied to six

test functions that are named in the top row of the next six columns. N1CV2 is a FORTRAN

implementation of the good non-VU proximal bundle method of Lemarechal and Sagastizabal

[10]. The code N.VU is written in MATLAB, except for its FORTRAN quadratic progamming

subroutine taken from N1CV2. The leading N. refers to a Newton version, meaning that when it is

applied to a finite max function the Hesssian of a subfunction that is active at a point is provided by

the function evaluation subroutine. At each iteration a U-Hessian estimate is computed depending

on a current U-projected convex combination of subfunction Hessians as described in [20]. The

last method, qN.VU, is a first attempt at a quasi-Newton version of N.VU. It does not use second

derivative information, but instead uses a current U-projected BFGS-updated n by n matrix

intended to approximate the Hessian of the kind of Lagrangian in Theorem 7.2 of [19].

In the table, numbers under f/g indicate the total number of function evaluations for a run.

Each such evaluation also includes the evaluation of one subgradient and, in the case of the Newton

version, includes the evaluation of one subfunction Hessian. The label Ac indicates an accuracy

measure that is the number of correct digits in the best f -value found. Except for 3d-Ex the test

functions are the convex finite max functions from [20].

The convex function 3d-Ex is given by

f(x1, x2, x3) = (1/2)x2
1 + (1/2)

√
((x2

1 − 2x2)2 + (x3 − x2)2).

It was created for use in conference presentations and in future publications to illustrate graphically

various concepts, such as a primal and dual tracks. This nonsmooth function is the maximum

eigenvalue of a symmetric 2 by 2 matrix whose three distinct entries are C2-functions on R3. As

such, this infinite max function is in the very broad class of functions with primal-dual gradient

(pdg) structure first defined in [17] and further developed in [19]. In [18] such functions are shown

to have primal-dual tracks under certain conditions including “strong transversality”. Also, 3d-

Ex can be viewed as a quadratic function plus the Euclidean norm of a 2-dimensional vector
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function. N.VU was run on this function using its Hessian at points where its square root function

is evaluated at a positive number and using the Hessian of the first term, (1/2)x2
1, otherwise.

The good performance of the quasi-Newton version relative to that of N1CV2 as revealed in

Table 1 is especially encouraging, because it is the type of algorithm which is needed to minimize

implicitly defined functions resulting from applying decomposition, relaxation and/or dualization

techniques to large or complex mathematical programming problems.

For the test functions with known positive definite U-Hessians the VU-codes have generated

p-sequences with observed numerical superlinear convergence. For all such functions they have

reported terminal V and U subspace dimensions equal to those of the ones for the known optimal

solutions.

2. First year findings resulting from AFOSR support

AFOSR supported research was first devoted to working on theory for algorithm convergence

and application. There are several assumptions in [20] for showing superlinear convergence of the

p-sequence to a unique minimizer x̄. One of the two most important of these is the condition

that eventually each bundle run generates local V and U subspace basis matrices that converge

to ones for the corresponding subspaces at x̄. The Principal Investigator consulted with the Key

Senior Investigator, Claudia Sagastizabal, on her paper with A. Daniilidis and M. Solodov [4]

which shows this condition holds for certain convex max-functions. In addition to assuming that

the bundle center is close enough to x̄, the authors assume that the prox-parameter is sufficiently

large, a condition that fits in well the above discussion on not having an upper bound on the

µ-value chosen for the first bundle run for each iteration.

The PI corrected their initial result concerning which generated vectors are basis vectors for

the V-subspace and also suggested a bundle subroutine stopping test (based on being similar

to one in [20]) which turned out to be better numerically than their original one. In addition,

the PI improved their discussion of the structure of the L1-norm function used as an example.

This improvement, detailed next, validates the importance of pdg-structure mentioned in the

introduction. The definition of pdg-structure depends on several C2 structure functions, denoted

by fj and φj , where the latter type are essential for expressing the structure of infinite max-

functions such as maximum eigenvalue functions. For f(x) =
∑n
i=1 |xi| at a point x̂ where m

out of the n x̂i’s are zero there are two extreme ways to express the pdg-structure for f near

x̂. One way uses 2m structure functions fj based on the classical result that f can be expressed

as the pointwise maximum of 2m C2 functions . The other way developed by the PI uses only

1 +m structure functions, denoted by f0 and φj for j = 1, 2, ...,m. An important condition that

implies the existence of a primal track to x̂ is strong transversality. For the first structure this
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condition says that at x̂ the gradients of the 2m fj ’s are affinely independent. For the second

structure the condition reduces to the m ∇φj(x̂)’s being linearly independent which is the case

for this f , since these gradients are distinct unit vectors. If 2m is larger than n+ 1 then the first

structure does not satisfy strong transversality, so the second structure is to be preferred. In any

case the second structure appears to be a more natural representation for the local structure of

the L1-norm function. This is another illustration of the importance of having φj-type structure

functions for describing the local structure of nonsmooth functions.

Also, during the first year of AFOSR grant research more work was done on the quasi-Newton

version of the algorithm. The original version restarted a BFGS update process with a scalar

multiple of the identity matrix whenever the U-dimension estimate (which starts at n) attained

a new least value. The current version does not restart, but instead starts at iteration 3 or

higher when two distinct p-iterates and corresponding s-iterates generate a large enough curvature

estimate to be used as an initialization scalar multiplier. This simpler process runs as well as the

original one on the Table 1 test functions and on several others. This change has the added benefit

of allowing for fewer and less complicated heuristics for updating the prox-parameter in situations

where there is some indication that its value is relatively too large, which can occur when the

VU-dimensions are not yet optimal.

Another promising quasi-Newton update from [13] was also tried. However, in our reduced

Hessian context it often produced ill-conditioned U-Hessian estimates which led to poor overall

performance in comparison to the BFGS update. Perhaps, this indicates that in the future the

DFP update should be tried, because it is one in the Broyden class that is, in some sense, furthest

away from the new update in [13].

Additional testing on some randomly generated functions that are pointwise maxima of quadrat-

ics found a few functions that were much more difficult to minimize than most in terms of total

number of function evaluations. An idea that led to overall improvement depends on the observa-

tion that for some bundle subproblem runs the final iterate that satisfies the stopping test has an

f-value that is worse than that of one of the previous bundle iterates that was active in generating

the last iterate. So, the bundle subroutine output proximal point estimate p was changed to be

the bundle iterate with the best f-value from among those of either the last iterate or the iterates

active in generating the last one. This change could be even more important for extending the

algorithm to converge to stationary points for nonconvex functions, a subject of ongoing research.

3. Second year research findings

During the second year of research more progress was made on improving the performance of the

BFGS quasi-Newton version of our VU-algorithm for the convex case. As stated in the introduction
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x+, equal to p plus its U-Newton step, may not be a “good” bundle center in the sense that its

bundle run generated prox point estimate p+ has such a large f -value that it causes both a line

search and an additional bundle run to be executed, in order to obtain good replacements for the

values of x+ and p+. In order to avoid some of these undesirable iterations having two bundle

runs there is now a heuristic test based on the f -value at the initial value of x+. One possible

outcome of the test is to declare a “bad” value of x+ and call for a preemptive line search from

p along the U-Newton direction to find a replacement point that has a very good f -value, i.e.

one that does not exceed f(p). This action is taken when f(x+) > max{f(x), f(x−)} where x

is the bundle center corresponding the current p and x− is the one from the previous iteration.

Not including f(x−) in this heuristic test led to poor performance on some test functions that

either did not have a primal track to a minimizer or did not have a positive definite U-Hessian

at a minimizer. The current code actually has a third heuristic number to test against. Research

on this important feature will be revisited when a future version of the algorithm is developed for

nonconvex functions.

The quasi-Newton version of the algorithm, with the test for f(x+) being too large and with

the other features mentioned above, gave very good numerical results on several test functions.

These included slight improvements for the functions considered in Table 1. For example, the

new numbers for the 3d-EX column are 35 14 and for the 3d-U0 column are 30 15. Also, this

version provided observed superlinear convergence as illustrated below in Figure 1 where it is

called VU-BFGS. This figure shows the results of running two BFGS-update based methods on

an 8 variable nonsmooth example function from Lewis and Overton [11]. The function’s minimum

value is zero. The graph shows function value, on a log base 10 scale, depending on function

evaluation number, i.e. the first blue and red marks correspond to a value around 660, the 249th

red dot’s value is about 10−15 while the 87th blue mark’s value is near 10−16. The red dots were

produced by the smooth BFGS algorithm with line searches from [11] and they represent observed

R-linear convergence. The blue plus symbols come from VU-BFGS and they illustrate observed

R-superlinear convergence.

We are now in the position to improve the numerical behavior of the algorithm and future

versions of it, even for the nonconvex case. This is because we have gotten permission to use

Kiwiel’s best computer code for solving the sequence of quadratic programming (QP) subproblems

called for in each bundle run. This code is a very accurate one based on a specialized QP method

in [7]. It also has the facility to execute a “warm start” that uses an ending matrix factorization

for one QP to start the next QP solution process.

Also, during the second year of research we made two preliminary advances for getting a handle

on the noncovex case. One is the improvement of a code [16] for local minimization of a non-

convex function of a single variable which can be used for executing line searches called for by
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Figure 1. Comparison of Smooth and VU Algorithms

a multivariable algorithm and for generating useful negative curvature information when such is

encountered. The code is based on the method in [15] which combines linear and/or quadratic

approximation to obtain superlinear convergence for piecewise C2 functions. The improvement

comes from more use of quadratic approximation in order to increase the likelihood of an iterate

being on the opposite side of a local minimizer from that of the previous iterate. This means that

curvature information on either side of a local minimizer is very likely to be updated every second
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iteration rather than having a sequence of two or more consecutive iterations where there is no

update on a given side.

The other significant advance comes from the PI’s consultation with Claudia Sagastizabal on

her non-VU composite bundle method [23] for solving certain nonconvex composite problems of

the form

min
x∈<n

(h ◦ c)(x)

where c : <n → <m is a smooth mapping and h : <m → < is a positively homogeneous convex

function. Such a structure separates the two difficulties of nonconvexity and nondifferentiability

by allowing only the component functions of c to be nonconvex and only h to be nonsmooth. This

separation along with positive homogeneity of h allows the algorithm to only store and update a

bundle of subgradients of the outer function h rather than ones from the objective f = h◦c. In [23]

this implementable algorithm is shown to have accumulation points that are Clarke stationary for

locally Lipschitz functions. It is a specialized version of a conceptual method introduced by Lewis

and Wright [12] for much more general outer functions h. These methods employ certain composite

proximal linearized subproblems each of which involves replacing the inner smooth mapping c by

an affine approximation. Because of this linearization, the new composite bundle algorithm has

a type of step not present in previous proximal bundle methods that only have serious and null

steps. This third type of step is called a backtrack step. It is like a null step in that it does not

change the bundle center, but unlike one, because it requires the bundle parameter to be increased

strictly. This leads to the interpretation of it being a step that decreases the size of an implicit

trust region about the current bundle center.

A possible first step in a forecast future progression of steps to learn how to deal with non-

convexity within a VU-algorithm would be to determine how to use information in the composite

bundle algorithm to make V-space approximations and where to add moves from corresponding

U-gradient approximation.

4. Final year research findings

During this period a major revision of Sagastizabal’s composite bundle method paper [23]

was made and submitted to MathematicalProgramming. It now contains a large number of

computational runs on an extensive variety of convex and nonconvex test functions. This paper’s

algorithm is compared with three other methods, including the smooth BFGS algorithm with a

Wolfe line search considered in Figure 1, and the HANSO package hybrid method downloadable

from http://cs.nyu.edu/overton/software/index.html. This hybrid is the BFGS algorithm

followed by the Gradient Sampling algorithm [2], if the BFGS terminal point is not satisfactory.
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Even though BFGS does not have a convergence proof for nonsmooth functions and it has been

observed to fail, it does have adequate accuracy and relatively fast convergence for some functions.

The HANSO method converges in a probabilistic sense to Clarke critical points, because Gradient

Sampling has this property. But this hybrid method is the most expensive one in the foursome in

terms of total number of functions evaluations.

Overall, in a certain average sense including the performance measures of solution accuracy,

computer time used and number of function evaluations, Composite Bundle was judged to be the

best performer among the four solvers tested. Of course, a different conclusion could result from

running on a different set of test functions.

Composite Bundle did have some difficulties with certain function and starting point instances.

There were stalls resulting from consecutive iterations with too short function-value-reducing

serious steps or with null and/or back track steps which do not improve the objective value. Such

behavior results in the plateaus seen in Figure 2 below, which is taken from [24] and is discussd

next.

Figure 2. Function value sequences for maxquad

Figure 2 deals with the nonsmooth convex test-function called maxquad [1, p. 153], which also

is considered above in the last column of Table 1, but with a different starting point. It is the

pointwise maximum of five convex quadratic functions on <10. At its unique optimal solution,
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four of the quadratic functions are active, but the fifth (inactive) one is stiff, making maxquad an

interesting academic example for testing different algorithms. It is more difficult to minimize than

the function considered in Figure 1.

For four different algorithms Figure 2 shows function value accuracy, relative to the smallest

value ever found. The horizontal axis gives number of function evaluations referred to there

as black box calls. In addition to Composite Bundle (blue circles) and smooth BFGS (black

plus symbols) this algorithm group contains the Proximal Bundle[10] code N1CV2 (red squares),

considered in Table 1, and VU-bundle (quasi-Newton) (green x’s), called VU-BFGS in Figure 1.

The VU-algorithm can be thought of as a significant improvement of both the Proximal Bundle

and BFGS methods, since it combines bundled subgradients of the former, to estimate V and U

subspaces, together with use of the BFGS Hessian update formula of the latter, but restricted to

the U-subspace where Hessian approximation makes sense. A possible follow-up research topic

would to be to make a similar improvement of Composite Bundle by adding appropriate U-steps to

its serious steps. This could be an important development in nonconvex minimization, but only in

the special case of known composite structure where the outer function is positively homogeneous

and convex. This could provide insight into the noncovex case before attacking much more general

nonconvex functions where the evaluation black box only provides one generalized gradient value

with each function evaluation.

However, we speculated that the key idea of a backtrack step from the Composite Bundle

method could provide enough insight to jump to the quite general case of locally Lipschitz func-

tions that are semismooth [14]. We thought it could be the needed ingredient to make a successful

VU-modification of Gupta’s [5] provably convergent algorithm that bundles Hessians together with

points and their associated generalized gradients (simply called gradients from here on). The bun-

dled Hessians that give negative curvature information can be used to construct, V-models with

strictly concave “sides”. This can be done algebraicly by modifying bundle subproblem lineariza-

tion errors via the addition of quadratic terms as done in 1980’s AFOSR supported research [15]

for the single variable case.

Embarking on this research fortuitously led to the most significant results we have to date for

the noncovex case and bode well for proposed research under our new AFOSR grant. So far, we

have discovered how to define a non-VU algorithm with finite line searches and overall convergence

to local minimizers for semismooth functions without even requiring backtrack steps. The only

steps needed are serious and null ones depending on newly developed Armijo and Wolfe line search

tests appropriately generalized for nonsmoothness and nonconvexity. Moreover, the Hessians based

on negative curvature discovered during line searches need not be stored as matrices, since they

are needed only for matrix-vector products. Instead pairs of point and corresponding gradient
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difference vectors can be stored for use in a symmetric rank one (SR1) update formula starting

from the zero matrix.

Future research will investigate if the assumption of f being lower C2, which implies semis-

moothness, may be sufficient to obtain boundedness of the negative curvature matrices which is

a condition needed for convergence proofs. This could be the case, because such a function has

the implicit property of being the sum of a convex function and quadratic function [22]. Also,

there will be work on how and when to add U-steps to the serious steps of the basic nonconvex

algorithm in order to achieve rapid local convergence under appropriate assumptions.
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and Practical Aspects. Universitext, 2nd edition, Springer-Verlag, Berlin, 2006.

[2] J. Burke, A. Lewis, and M. Overton, “Two numerical methods for optimizing matrix stability”, Linear

Algebra and its Applications 351-352 (2002) 117-145.

[3] R. Correa and C. Lemarechal, “Convergence of some algorithms for convex minimization”, Mathe-

matical Programming 62 (1993) 261-275.

[4] A. Daniilidis, C. Sagastizabal and M. Solodov, ”Identifying Structure of Nonsmooth Convex Functions

By the Bundle Technique”, SIAM Journal on Optimization 20 (2009) 820-840.

[5] N. Gupta, “A higher than first order algorithm for nonsmooth constrained minimization”, Ph.D.

Dissertation, Washington State University, (Pullman, WA, 1985).

[6] J.B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms I and II

(Springer-Verlag, Berlin, 1993).

[7] K.C. Kiwiel, “A dual method for certain positive semidefinite quadratic programming problems”,

SIAM Journal on Scientific and Statistical Computing, 10(1) (1989) 175-186.

[8] C. Lemarechal and R. Mifflin, “A globally and superlinearly convergent algorithm for one-dimensional

minimization of convex functions”, Mathematical Programming 24 (1982) 241-256.

[9] C. Lemarechal, F. Oustry and C. Sagastizabal, “The U -Lagrangian of a convex function”, TAMS,

352 (2000) 711-729.

[10] C. Lemarechal and C. Sagastizabal, “Variable metric bundle methods: from conceptual to imple-

mentable forms”, Math. Program., Ser. A, 76 (1997) 393-410.

[11] A.S. Lewis and M.L. Overton, “Nonsmooth Optimization via BFGS”, available at

http : //www.optimization− online.org/DB−HTML/2008/12/2172.html, 2008.

[12] A.S. Lewis and S.J. Wright, A proximal method for composite minimization, available at

http : //www.optimization− online.org/DB−HTML/2008/12/2162.html, 2008.

[13] C. Liu and S. Vander Wiel, ”Statistical Quasi-Newton: A New Look at Least Change”, SIAM Journal

on Optimization 18 (2007) 1266-1285.

[14] R. Mifflin, “Semismooth and semiconvex functions in constrained optimization”, SIAM Journal on

Control and Optimization 15 (1977) 959-972.



12

[15] R. Mifflin, “Stationarity and superlinear convergence of an algorithm for univariate locally Lipschitz

constrained minimization”, Mathematical Programming 28 (1984) 50-71.

[16] R. Mifflin, “An implementation of an algorithm for univariate minimization and an application to

nested optimization”, Mathematical Programming Study 31 (1987) 155-166.

[17] R. Mifflin and C. Sagastizabal, “On V U -theory for functions with primal-dual gradient structure”,

SIAM J. Optimization 11 (2000) 547-571.

[18] R. Mifflin and C. Sagastizabal, “V U -Smoothness and Proximal Point Results for Some Nonconvex

Functions”, Optimization Methods and Software, 19 (2004) 463-478.

[19] R. Mifflin and C. Sagastizabal, “Primal-dual gradient structured functions: second-order results;

links to epi-derivativies and partly smooth functions”, SIAM Journal on Optimization, 13(4) (2003)

1174-1194.

[20] R. Mifflin and C. Sagastizabal, “A V U -algorithm for convex minimization”, Mathematical Program-

ming, 104 (2005) 583-608.

[21] R.T. Rockafellar, “Monotone operators and the proximal point algorithm”, SIAM Journal on Control

and Optimization 14 (1976) 877-898.

[22] R.T. Rockafellar and R. Wets, Variational Analysis, no. 317 in Grund. der Math. Wiss, Springer-

Verlag, 1998.
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